Noise processes in nanomechanical resonators
نویسندگان
چکیده
Nanomechanical resonators can be fabricated to achieve high natural resonance frequencies, approaching 1 GHz, with quality factors in excess of 10. These resonators are candidates for use as highly selective rf filters and as precision on-chip clocks. Some fundamental and some nonfundamental noise processes will present limits to the performance of such resonators. These include thermomechanical noise, Nyquist–Johnson noise, and adsorption–desorption noise; other important noise sources include those due to thermal fluctuations and defect motion-induced noise. In this article, we develop a self-contained formalism for treating these noise sources, and use it to estimate the impact that these noise processes will have on the noise of a model nanoscale resonator, consisting of a doubly clamped beam of single-crystal Si with a natural resonance frequency of 1 GHz. © 2002 American Institute of Physics. @DOI: 10.1063/1.1499745#
منابع مشابه
Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems
Nanomechanical resonators can now be realized that achieve fundamental resonance frequencies exceeding 1 GHz, with quality factors ~Q! in the range 10<Q<10. The minuscule active masses of these devices, in conjunction with their high Qs, translate into unprecedented inertial mass sensitivities. This makes them natural candidates for a variety of mass sensing applications. Here we evaluate the u...
متن کاملUncertainty in least-squares fits to the thermal noise spectra of nanomechanical resonators with applications to the atomic force microscope.
Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we presen...
متن کاملNanomechanical torsional resonators for frequency-shift infrared thermal sensing.
We investigate use of nanomechanical torsional resonators for frequency-shift-based infrared (IR) thermal sensing. Nanoscale torsion rods, ~1 μm long and 50-100 nm in diameter, provide both extraordinary thermal isolation and excellent angular displacement and torque sensitivities, of order ~10(-7) rad·Hz(-1/2) and ~10(-22) (N·m) Hz(-1/2), respectively. Furthermore, these nanorods act as linear...
متن کاملPhase synchronization of two anharmonic nanomechanical oscillators.
We investigate the synchronization of oscillators based on anharmonic nanoelectromechanical resonators. Our experimental implementation allows unprecedented observation and control of parameters governing the dynamics of synchronization. We find close quantitative agreement between experimental data and theory describing reactively coupled Duffing resonators with fully saturated feedback gain. ...
متن کاملNoise color and asymmetry in stochastic resonance with silicon nanomechanical resonators
Stochastic resonance with white noise has been well established as a potential signal amplification mechanism in nanomechanical two-state systems. While white noise represents the archetypal stimulus for stochastic resonance, typical operating environments for nanomechanical devices often contain different classes of noise, particularly colored noise with a 1/f spectrum. As a result, improved u...
متن کامل